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We investigated the incompressible and compressible magnetohydrodynamic (MHD) en-

ergy cascade rates in the solar wind at different heliocentric distances. We used in situ mag-

netic field and plasma observations provided by the Parker Solar Probe (PSP) mission and

exact relations in fully developed turbulence. To estimate the compressible cascade rate,

we applied two recent exact relations for compressible isothermal and polytropic MHD

turbulence, respectively. Our observational results show a clear increase of the compress-

ible and incompressible cascade rates as we get closer to the Sun. Moreover, we obtained

an increase in both isothermal and polytropic cascade rates with respect to the incompress-

ible case as compressibility increases in the plasma. Further discussion about the relation

between the compressibility and the heliocentric distance is carried out. Finally, we com-

pared both exact relations as compressibility increases in the solar wind and although we

note a slightly trend to observe larger cascades using a polytropic closure, we obtained

essentially the same cascade rate in the range of compressibility observed.
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I. INTRODUCTION

The solar wind is a well-studied supersonic plasma flow, from the closest point to the Sun to

the edge of the heliosphere, characterized by a turbulent energy cascade rate (Tu and Marsch,

1995; Fraternale et al., 2019). The availability of in situ measurements from various orbiting

spacecraft through different heliocentric distances allow a deep understanding of the essential role

of turbulence from the large scales up to the kinetic scales in the solar wind plasma (Alexandrova

et al., 2013; Bruno and Carbone, 2013; Kiyani, Osman, and Chapman, 2015; Chen, 2016).

In this sense, the Parker Solar Probe (Fox et al., 2016) (PSP) mission has been exploring the

inner heliosphere since 2018, approaching to the Sun with each orbit and enabling us to study the

evolution of turbulence and to compare observations with theoretical predictions.

A prevailing challenge in the solar wind community is to enhance the models of the turbulence

heating of the plasma, with particular focus in the near-Earth space and the magnetosphere envi-

ronments (Sahraoui, Hadid, and Huang, 2020; Chen et al., 2020; Huang et al., 2020; Andrés

et al., 2019, 2021; Andrés et al., 2022; Huang and Sahraoui, 2019; Hadid et al., 2018; Kiyani,

Osman, and Chapman, 2015; Alexandrova et al., 2013; Howes et al., 2012; Osman et al., 2011).

Observations have shown that the solar wind proton temperature tends to decrease slowly as a

function of the radial distance from the Sun in contrast to the prediction of the adiabatic expansion

model of the solar wind (Marsch et al., 1982; Vasquez et al., 2007; Pine et al., 2020). While

several scenarios have been proposed to explain these observations, one of the main candidate is

certainly the local heating of the solar wind plasma via the turbulent cascade (Bruno and Carbone,

2013; Matthaeus and Velli, 2011). In this picture, the energy injected at the largest scales in the

solar wind will cascade within the inertial range until it reaches the ion scales where it is eventu-

ally transformed into thermal or kinetic energy of the plasma particles (see Sahraoui, Hadid, and

Huang (2020); Kiyani, Osman, and Chapman (2015)).

Several efforts have been made in order to provide an estimation of the energy cascade rate in

the solar wind at different scales and heliocentric distances. The first exact relation use the von-

Kármán-Howarth dynamical equation (von Kármán and Howarth, 1938) and it is considered one

of the very few exact results in hydrodynamic (HD) turbulence theory (Frisch, 1995). This exact

relation gives an expression for the energy dissipation or cascade rate ε as a function of struc-

ture functions of the turbulent fields (e.g., Monin and Yaglom, 1975; Frisch, 1995). Galtier and

Banerjee (2011) and Banerjee and Galtier (2014) generalized this exact relation to compressible
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isothermal and polytropic HD turbulence, respectively, under the assumption of homogeneity and

in the asymptotic limit of a high Reynolds number. The authors have found the presence of a new

type of term which acts on the inertial range similarly as a source or a sink for the mean energy

transfer rate.

In the case of magnetized plasmas, the first proper exact relation was derived by Politano

and Pouquet (1998a,b) for homogeneous, isotropic and incompressible magnetohydrodynamics

(IMHD) turbulence. The authors recovered a scaling law for mixed third-order longitudinal struc-

ture and correlation functions. This exact law has been the subject of several numerical tests

Mininni and Pouquet (e.g., 2009); Boldyrev, Mason, and Cattaneo (e.g., 2009); Wan et al. (e.g.,

2010); it has been used for the estimation of the incompressible cascade rate in space plasmas

(Sorriso-Valvo et al., 2007; Sahraoui, 2008; Coburn et al., 2015; Simakov and Chacón, 2008;

Masters et al., 2008) and the magnetic and kinetic Reynolds numbers (Weygand et al., 2007) in

solar wind turbulence, and for the large-scale modeling of the solar wind (Matthaeus et al., 1999;

MacBride, Smith, and Forman, 2008). Banerjee and Galtier (2013) derived an exact relation for

some two-point correlation functions of the fields for isothermal compressible magnetohydrody-

namic (CMHD) turbulence, expressed in terms of flux or source terms. On the other hand, Andrés

and Sahraoui (2017) revisited the latter work and expressed the exact law as a function of the

proper plasma variables, i.e., the plasma mass density, the plasma velocity field and the compress-

ible Alfvén velocity. This theoretical work showed that there are four different types of terms that

are involved in the non-linear cascade of energy in the inertial range: the hybrid terms (which

can be written either as flux or source terms), the β-dependent terms and the well-known flux

and source terms (see, Andrés and Banerjee (2019); Ferrand et al. (2020)). Recently, Simon and

Sahraoui (2021) proposed a more general method that allows to derive the exact relation for any

turbulent isentropic flow (i.e., constant entropy). The authors demonstrated that the well-studied

MHD exact laws (incompressible and isothermal) and the new (polytropic) one can be obtained as

specific cases of the general exact relation when the corresponding closure is specified. These for-

mulations for IMHD and CMHD turbulence are used in the present study to estimate the non-linear

transfer of energy in the solar wind.

A first attempt to include the compressibility in estimating the energy cascade rate using in situ

observations was reported by Carbone et al. (2009) using a phenomenological model and Ulysses

observations. The authors found a significant increase in the turbulent cascade rate and a better

scaling with respect to the incompressible exact law. However, those results were based on a
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heuristic model, using pseudo-energies, which are not conserved in CMHD theory (Marsch and

Mangeney, 1987). In the same framework, Marino et al. (2008) showed that the compressible

turbulent cascade seems to be able to supply the energy needed to account for the local heating

of the non-adiabatic solar wind. Banerjee et al. (2016) and Hadid, Sahraoui, and Galtier (2017)

have studied the impact of the compressible fluctuations in the energy cascade in the solar wind

using a reduced form of the exact relation for CMHD turbulence and in situ observations from the

Time History of Events and Macroscale Interactions during Substorms (THEMIS) (Auster et al.,

2009) spacecraft. The authors found that the compressible fluctuations are shown to amplify by

several order of magnitude the turbulent cascade rate with respect to the incompressible model.

Recently, Bandyopadhyay et al. (2020) have computed the incompressible energy transfer rate

between 35 and 55 solar radius using PSP observations during the first encounter. Andrés et al.

(2021) extended previous observational studies computing the compressible energy transfer rate

from ∼ 0.2 au up to ∼ 1.7 au, using PSP, THEMIS and Mars Atmosphere and Volatile EvolutioN

(MAVEN) observations. The authors showed that, depending on the level of compressibility in the

plasma, the different terms in the compressible exact relation were shown to have different impact

in the total cascade rate (where the incompressible terms are included). Moreover, using more

than 2 years of PSP observations, Andrés et al. (2022) studied the incompressible energy cascade

rate using isotropic and anisotropic exact relations. The authors found a connection between the

heliocentric distance, the local temperature of the plasma and the energy cascade rate, with a clear

dominance of the perpendicular cascades over the parallel cascades as PSP approaches the Sun.

In the present paper, we use the magnetic field and plasma moments PSP observations at dif-

ferent heliocentric distances to compute the compressible and incompressible energy cascade rate.

Our goal is to discuss the role of compressibility and heliocentric distance in the energy cascade in

the solar wind. The paper is organized as follows: in section II we recall the theoretical CMHD set

of equations and present briefly the main steps to derive the exact law for fully developed CMHD

turbulence. In section III, we describe the data set composed of more than 3000 PSP events and

the selection criteria used in the present study. In section IV, we present the main observational

results. Finally, in section V we provide a summary and discussion of our main findings.
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II. THEORETICAL MODELS AND EXACT RELATIONS

A. Compressible MHD model

The three dimensional (3D) CMHD model is given by the mass continuity equation, the mo-

mentum equation for the velocity field in which the Lorentz force is included, the induction equa-

tion for the magnetic field B and the differential Gauss’s law (solenoidal condition ∇ · B = 0) .

These equations can be written as (Marsch and Mangeney, 1987),

∂ρ

∂t
= −∇ · (ρu), (1)

∂u
∂t

= −u · ∇u + uA · ∇uA −
∇(P + PM)

ρ
− uA(∇ · uA) + fk + dk, (2)

∂uA

∂t
= −u · ∇uA + uA · ∇u −

uA

2
(∇ · u) + fm + dm, (3)

0 = uA · ∇ρ + 2ρ(∇ · uA), (4)

where u is the velocity field (assuming a zeroth background flow speed) and uA = B/
√

4πρ is the

compressible Alfvén velocity with B the total magnetic field and ρ the mass density. Note that,

the time dependence enters through u, B and ρ. In addition, P is the scalar isotropic pressure

and PM = ρu2
A/2 is the magnetic pressure. In the present work, we use two different equations of

state which allow us to close the hierarchy of the fluid equation (so there is no need of an energy

equation): the isothermal case, i.e., P = C2
sρ, where Cs is constant sound speed and the polytropic

case, i.e., P = Csρ
γ, γ = 5/3 is the polytropic index and Cs is the variable sound speed. Finally,

fk,m are the respectively mechanical and the curl of the electromotive large-scale forcing, and dk,m

are respectively the small-scale kinetic and magnetic dissipation terms.

B. Exact relation in CMHD turbulence

In the CMHD model, the density total energy E(x) and the density-weighted cross helicity H(x)

are given by,

E(x) =
ρ

2
(u · u + uA · uA) + ρe, (5)

H(x) = ρ (u · uA), (6)

where e is the internal energy. While the total energy is one of the ideal invariants, the density-

weighted cross helicity is not. Nevertheless, both quantities are essential for the derivation of the
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exact law in CMHD turbulence (see, Andrés and Sahraoui, 2017; Simon and Sahraoui, 2021). In

particular, we can define the two-point correlation function associated with the total energy, the

helicity and the magnetic field by,

RE(x, x′) =
ρ

2
(u · u′ + uA · u′A) + ρe′, (7)

RH(x, x′) =
ρ

2
(u · u′A + uA · u′), (8)

RB(x, x′) =
ρ

2
(uA · u′A) (9)

where the prime denotes field evaluation at x′ = x + ` (` being the displacement vector) and the

angular bracket 〈·〉 denotes an ensemble average. The properties of spatial homogeneity implies

that the results of averaging over a large number of realizations can be obtained equally well

by averaging over a large region of space for one realization. In particular, under homogeneity

assumption, the correlation functions will depend only on the vector displacement `.

Using Eq. (1)-(4), the expressions (7)-(9) and following the usual assumptions for fully devel-

oped homogeneous turbulence (i.e., infinite kinetic and magnetic Reynolds numbers and a steady

state with a balance between forcing and dissipation) (see, Banerjee and Kritsuk, 2018; Banerjee

and Andrés, 2020), an exact relation for compressible MHD turbulence can be obtained in the

inertial range as,

− 2εC =
1
2
∇` · FC + S C + S H + Mβ, (10)

where εC is the total compressible energy cascade rate, FC is the total compressible flux (defined

below) and S C, S H and Mβ are the so-called source, hybrid and β-dependent terms, respectively.

For a detailed derivation and the explicit expressions of the total compressible energy cascade rate,

see Andrés and Sahraoui (2017); Simon and Sahraoui (2021). It is worth mentioning that, the

derivation of the exact law (10) does not require the assumption of isotropy (Andrés et al., 2022)

and that it is independent of the dissipation mechanisms acting in the plasma (assuming that the

dissipation acts only at the smallest scales in the system). In the present paper, in order to estimate

the compressible energy cascade rate, we shall consider only the flux terms. The main reason is

that the source, hybrid and β-dependent terms require computing the divergence of the plasma

and the compressible Alfvén speeds, which can be done only using multi-spacecraft observations.

Moreover, numerical results for supersonic and subsonic HD and MHD turbulence have shown

that the source, hybrid and β-dependent terms are negligible with respect to the flux term in the

inertial range (e.g., Kritsuk, Wagner, and Norman, 2013; Andrés, Galtier, and Sahraoui, 2018;

Andrés et al., 2019; Ferrand et al., 2020).
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The total compressible flux is a combination of two terms of different nature, a Yaglom-like

term,

F1C = 〈[δ(ρu) · δu + δ(ρuA) · δuA]δu − [δ(ρu) · δuA + δu · δ(ρuA)]δuA〉, (11)

which is the compressible generalization of the incompressible term (Politano and Pouquet,

1998b,a), and a new purely compressible flux term,

F2C = 2〈δρδeδu〉, (12)

which is a new contribution to the energy cascade rate due to the presence of density fluctuations

in the plasma (Andrés and Sahraoui, 2017; Simon and Sahraoui, 2021). Here, we have introduced

the usual increments, i.e., δα = α′ − α. It is worth mentioning that the difference between the two

compressible models is in the form of the specific internal energy e given by e = C2
s0 ln(ρ/ρ0) in

the isothermal case and e = (C2
s −C2

s0)/(γ(γ − 1)) in the polytropic one. The sound speed Cs (and

its mean value C2
s0) can be obtained from the perfect gas equation, C2

s = γkBTp/mp, where Tp and

mp are the proton temperature and mass, respectively, with γ = 1 and γ = 5/3 for the isothermal

and polytropic case, respectively. Therefore, when we estimate the polytropic and isothermal

cascade rate differences would arise only from the compressible flux term (12). Finally, assuming

statistical isotropy, we can integrate the flux terms in (10) over a sphere of radius ` to obtain a

scalar relation for isotropic turbulence. In compact form, (10) can be written as,

−
4
3
εC` = F1C + F2C, (13)

where F1C + F2C = (F1C + F2C) · ûsw is the flux term projected into the mean plasma flow velocity

field usw. Note that, we called ε1C + ε2C = (−3/4`)(F1C + F2C).

In the incompressible limite ρ → ρ0, we recover the Politano and Pouquet law for fully devel-

oped incompressible MHD turbulence,

−
4
3
εI` = FI , (14)

where FI is the projection of FI = ρ0〈[(δu2) + (δu2
A)]δu − 2(δu · δuA)δuA〉 along the mean plasma

flow velocity field (Politano and Pouquet, 1998a,b). Assuming the Taylor hypothesis, i.e., ` ≈ u0τ,

where τ is the time lag and u0 is obtained by averaging over each time interval, all the quantities

that are indexed by 0, Eqs. (13) and (14) can be expressed as a function of the time lags τ.
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III. PSP OBSERVATIONS AND DATA SELECTION CRITERIA

In order to estimate the compressible energy cascade rate, we employed magnetic field mea-

surements by the FIELDS flux gate magnetometer (MAG), along with proton density, velocity

and temperature data from the Solar Probe Cup (SPC) of the SWEAP instrument suite (Bale et al.,

2016; Fox et al., 2016; Kasper et al., 2016; Bale et al., 2019; Kasper et al., 2019; Case et al.,

2020). Our analysis on the PSP observations involved a time interval between November 2, 2018,

and December 30, 2020. This data set was divided into a series of samples of equal duration of

60 minutes. This particular time duration ensures having at least one correlation time of the turbu-

lent fluctuations for each particular heliocentric distance (Parashar et al., 2020; Hadid, Sahraoui,

and Galtier, 2017). To generate uniform time series, we re-sampled all the variables to 30 s time

resolution. Thus, there are 10944 events using this data set.

In our data set, spurious spikes in the SPC moments, which are remnants of poor quality of

fits, were removed. To accomplish this, consecutive filters were applied, as Figure 1 shows. First,

for each event we applied a sharp mean value filter, which detect each spurious data and replace

it with the average between the previous and the next valid observation. When we say valid ob-

servation, we are referring to a real value of the data set. Although this filter removes most of

the spurious data, in some cases leaves a fictitious large data value. Therefore, we applied the

well-known Hampel filter in order to detect this fictitious outliers (Davies and Gather, 1993; Liu,

Shah, and Jiang, 2004; Pearson et al., 2016). In few words, the Hampel filter uses a moving win-

dow implementation of predetermined size to compute the local median mi and the local standard

deviation si. Then, for each point xi,

yi =


xi if |xi − mi| ≤ nσS i,

mi if |xi − mi| > nσS i,
(15)

if the absolute difference of the value of that point and the local median, |xi −mi| is above a thresh-

old defined as nσ times the local standard deviation, the value is replaced by the median. If not, the

algorithm leaves the current point unchanged and proceeds to the next point. We applied this tech-

nique using a local window of 8 points and choosing a threshold value of nσ = 3 (Bandyopadhyay

et al., 2018). This choice of parameters help eliminate most of the undetected spikes and smooth

the data set probably altered by the previous filter.

In addition, we considered only intervals that did not show large fluctuations of the energy

cascade rate over the large MHD scales, typically we retained events with std(εI)/mean(|εI |) <
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Figure 1. Schematic diagram of the filters used in order to remove spurious spikes from the data set.

0.85. Finally, we analyzed the distribution of density fluctuations of the filtered data set. Figure 2

shows the occurrence rate for all the analyzed events for the numerical density, velocity, and Alfvén

velocity field absolute values and their fluctuations, respectively. We can relate the distribution

of density fluctuations with the compressibility ratio defined as
√
〈ρ2〉 − 〈ρ〉2/〈ρ〉. Since most

of the events did not show high levels of compressibility rate, we only kept the events whose

compressibility reached up to 30%. This leaves us a data set of 3298 events.

IV. OBSERVATIONAL RESULTS

In order to compute the compressible and incompressible energy cascade rate, we constructed

correlation functions of the different turbulent fields at different time lags τ in the interval τ =

[30, 3480]s. Therefore, once we had the energy cascade as a function of the time increments and

in order to quantify statistically these increments, we took the average of the absolute values in

the largest MHD scales, i.e., τ = [1000, 3000]s to obtain representative values of each event in the

large scales (Hadid, Sahraoui, and Galtier, 2017; Andrés et al., 2020).
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A. The compressible and incompressible energy cascade rates

Figure 3 and 4 show the absolute value of the total compressible energy cascade rate 〈|εT |〉 as a

function of the absolute value of the incompressible cascade rate 〈|εI |〉 for (a) the isothermal (su-

perscript AS) and (b) the polytropic (superscript SS) model, respectively. The colorbars represent

the heliocentric distance per event and the compressibility rate
√
〈ρ2〉 − 〈ρ〉2/〈ρ〉 (in percent) of

each event. We found a strong correlation between the cascade rate amplitude and the distance to

the Sun. In particular, the closer to the Sun PSP is, the larger the energy cascade amplitude is. This

is in agreement with previous work in the solar wind studying the incompressible energy cascade

rate (e.g., Stawarz et al., 2009, 2010; Coburn et al., 2015; Chen et al., 2020; Andrés et al.,

2022). Moreover, we observed an increase in the energy cascade rate as the level of compressibil-

ity grows, reaching up to 25%. Also, we note a clear correlation between the compressible and

the incompressible cascade rates. It is worth mentioning that, for low values of the cascade, there

is a slight increase of the compressible cascade with respect to the incompressible one. It is worth

noting that, as we are studying the total expression (13), we are not able to differentiate between

the first and the second term which are the Yaglom-like term and the purely compressible one,

respectively.

Figure 2. The occurrence rate for the proton density, the proton and Alfvén velocity absolute mean values,in

the first row and the corresponding fluctuations in the second row, respectively
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Figure 3. Total compressible energy cascade rate (absolute values) in the MHD scales as a function of the

incompressible ones in the case of using an isothermal (AS) and polytropic (SS) model, respectively. The

colobar corresponds to the heliocentric distance per event.

B. The isothermal and polytropic energy cascade components

Figure 5 and 6 show the absolute value of (a) the isothermal component 〈|εAS
2C |〉 and (b) the

polytropic component 〈|εS S
2C |〉 as a function of the Yaglom-like compressible component 〈|ε1C |〉,

respectively. Again, the colorbar corresponds to the heliocentric distance and the compressibility

percent, respectively. Although, in general, the dominant term in the MHD scales is 〈|ε1C |〉, we

noticed that even for the nearly incompressible solar wind (Compressibility ≤ %10), for some

events the purely compressible term is relevant for a proper estimation of the total cascade. We

also observed that there are some events where the energy of the compressible term exceeds the

Yaglom-like term. Moreover, the level of compressibility increases up to 20-25% in those events.

Therefore, when we compared the compressible and the incompressible energy cascade in Figure

4, there is an important compressible component even though most of the events tend to follow an

incompressible status.

We found the same behavior of the energy cascade with the heliocentric distance as seen in

Figure 3. Thus, we observe the fact that the energy cascade rates, both compressible and in-

compressible ones, are ordered by the heliocentric distance. Regarding the polytropic and the
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Figure 4. Total compressible energy cascade rate (absolute values) in the MHD scales as a function of the

incompressible ones in the case of using an isothermal (AS) and polytropic (SS) model, respectively. The

colobar corresponds to the level of compressibility (i.e.,
√
〈ρ2〉 − 〈ρ〉2/〈ρ〉) per event.

isothermal models, we noted that there is also a slight increase of the compressible term in the first

case with respect to the second one. In addition, we note that there are large cascade values when

we use the polytropic model.

C. The effect of compressibility and heliocentric distance over the energy cascade rates

Figure 7 shows the bin-average of the absolute value of the energy cascade rate as a function

of (a) the compressibility and (b) the heliocentric distance. It is worth mentioning that we group

events according to these magnitudes and then, we segment and sort data values into bins. Finally,

we took the average of each bin. In Fig. 7 (a) the colorbar corresponds to 〈|r|〉 and in Fig. 7 (b) the

colorbar corresponds to the compressibility. In particular, we compared the behavior of the total

expression of the compressible cascade, the compressible components, and the incompressible

cascade. We reported the standard error as the error bars. Figure 7 summarizes the results seen in

previous Figs. 3-6.

As we discussed previously, we notice that as we approach to the Sun, the absolute value of the

compressible energy cascade rate increases. Also, as the level of compressibility increases in the
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Figure 5. The compressible cascade rate component 〈|ε2C |〉 as a function of the Yaglom-like term 〈|ε1C |〉

in the MHD scales in the case of using an isothermal (AS) and polytropic (SS) model, respectively. The

colobar corresponds to the Heliocentric distance per event.

solar wind, there is an important increment of the compressible energy cascade, approximately one

order of magnitude. In the case of the incompressible cascade rate, the increment of the rate is less

relevant compared to the compressible one. It is worth mentioning that, there is a clear relation

between the compressibility and the distance to the Sun: as we travel away from the Sun, the larger

the level of compressibility is. Interestingly, here we show that, on average, 〈|εS S
2C |〉 > 〈|ε

AS
2C |〉 since

76% of the events satisfy this condition.

V. DISCUSSION AND CONCLUSIONS

In the present study, we estimated the energy cascade rate from both incompressible and com-

pressible cases, using two different closures for the compressible model, i.e., the isothermal and the

polytropic case. In particular, we computed the incompressible and compressible energy cascade

rate in the solar wind at different heliocentric distances (∼ 0.1 − 0.8 au). First, we found a clear

correlation between the energy cascade rate and the distance to the Sun. Our observational results

show that, as we get closer to the Sun, the absolute value of the energy cascade rate increase.

This observational result is compatible with recent studies (Adhikari et al., 2015; Bandyopad-
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Figure 6. The compressible cascade rate component 〈|ε2C |〉 as a function of the Yaglom-like term 〈|ε1C |〉

in the MHD scales in the case of using an isothermal (AS) and polytropic (SS) model, respectively. The

colobar corresponds to the level of compressibility per event.

hyay et al., 2020; Adhikari et al., 2021; Andrés et al., 2021; Andrés et al., 2022). For instance,

Andrés et al. (2022) showed a correlation between the incompressible energy cascade and the he-

liocentric distance in the inner heliosphere using isotropic and anisotropic exact relations. Also,

Bandyopadhyay et al. (2020) have estimated the energy transfer rate from the first PSP perihelion

using an incompressible exact relation and the von-Kármán decay law. The authors found that the

energy cascade obtained near the perihelion is about 100 times higher than the average value at

1 au. Although we used a more complex theoretical model, as we include density fluctuations to

model the expression for the energy cascade, our results show a similar increment of the energy

(up to two order of magnitude) as we approach to the Sun, probably due to the increase of the

mean value of the plasma density, magnetic and velocity magnitudes.

Secondly, we observed an increment of the compressible energy cascade rate when the level

of compressibility increases in the solar wind. We analyzed the competition between the first and

second term of the total expression of the compressible cascade for both isothermal and polytropic

models. Despite the fact that the first term is dominant in most of the cases, we found that the

second term (purely compressible) still plays a relevant role for a proper estimation of the total

compressible cascade. Moreover, we obtained that, for the most compressible events (20%-25%),
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Figure 7. Average of the energy cascade rate for a given: compressibility bin using a colorbar that cor-

responds to the heliocentric distance (left) and a heliocentric distance bin where the colorbar corresponds

to the level of compressibility (right). The total compressible cascade, the compressible component, the

Yaglom-like term and the incompressible cascade are included.

there is a non negligible growth in the compressible cascade with respect to the incompressible

one. Therefore, higher density fluctuations in the plasma lead to increasing εC over εI (Sorriso-

Valvo et al., 2007; Marino et al., 2008; Andrés et al., 2019, 2021). Similarly, using THEMIS,

MAVEN and PSP observations (at the first encounter), Andrés et al. (2021) reported moderate

increases of the isothermal compressible cascade with respect to the incompressible one at differ-

ent heliocentric distances. In our case of study, we expand these previous results including the

polytropic model and much more extended data set. Our observational results showed more sig-

nificant increments between the compressible and incompressible cascade, especially for the less

energetic events. In addition, Hadid, Sahraoui, and Galtier (2017) showed that the energy cascade

rate increases as compressibility increases in the plasma in the slow solar wind. Note that in the

present work, we do not separate the events into fast and slow solar wind but we confirmed this

observational results.

Moreover, we reported the average of the energy cascade rate in order to study and compare

the behavior between the compressibility levels and the heliocentric distance. We related these

two magnitudes and found out that the compressibility increases as we increase the distance to

the Sun. Our results are in good agreement with Chen et al. (2020), who computed the magnetic

compressibility coefficient CB = (δ|B|/|δB|)2 and showed a clear decrease toward smaller helio-
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centric distances. They observed that the compressibility levels at PSP perihelion are an order of

magnitude smaller at 1 au. However, their results are based on magnetic compressibility in the

frequency domain unlike the present work where we computed the mean values in the real space.

On the other hand, Adhikari et al. (2020) studied the frequency distribution of the solar wind

compressibility between 0.17 au and 0.61 au and showed that density fluctuation is concentrated

mainly around 0.15 au and decreases with the heliocentric distance. This result is compatible with

the density fluctuation levels found by Andrés et al. (2021). Instead, we showed that the density

fluctuation reach its highest values approximately at 0.5 au and decreases as we get closer to the

Sun.

Finally, we compared the compressible energy cascade calculated by using an isothermal and

polytropic model based on previous theoretical works (Andrés and Sahraoui (2017); Simon and

Sahraoui (2021)). From the figures mentioned above and, specially, Fig 7, we noticed that there is

a clear trend of the polytropic cascade to be larger than the isothermal one. In particular, Simon

and Sahraoui (2021) observed the same behavior at MHD scales despite using few events unlike

our present statistical work. However, it is worth mentioning that the two compressible models

(isothermal and polytropic) give essentially the same cascade rate due to the fact that the contri-

bution of the Yaglom-like term ε1C tends to be dominate over ε2C in the inertial MHD range in

both cases. In summary, our observational results support the idea that the compressible energy

cascade rate increases at small heliocentric distance and at large values of compressibility or den-

sity fluctuation levels. Nevertheless, there are some aspects of this work that require improvement.

First, we found some discrepancies about the intrinsic relation between the heliocentric distances

and the compressibility levels. In general, at smaller heliocentric distances, the compressibility

and thus, density fluctuations tends to be larger. Therefore, some other process may be acting to

suppress these fluctuation as we get closer to the Sun. Second, we only focus in the MHD scales.

Recent exact relations could be used to estimate the transfer of energy as we reach the sub ion

scales (Andrés, Galtier, and Sahraoui, 2018; Simon and Sahraoui, 2021, 2022). In forthcoming

works, further statistical investigation of these topics are going to be carried out using in situ data

in more compressible environments (like the Earth’s magnetosheath).
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Politano, H. and Pouquet, A., “von kármán–howarth equation for magnetohydrodynamics and its

consequences on third-order longitudinal structure and correlation functions,” Physical Review

E 57, R21 (1998b).

Sahraoui, F., “Diagnosis of magnetic structures and intermittency in space-plasma turbulence us-

ing the technique of surrogate data,” Phys. Rev. E 78, 026402 (2008).

Sahraoui, F., Hadid, L., and Huang, S., “Magnetohydrodynamic and kinetic scale turbulence in

the near-earth space plasmas: a (short) biased review,” Reviews of Modern Plasma Physics 4,

1–33 (2020).

Simakov, A. N. and Chacón, L., “Quantitative, comprehensive, analytical model for magnetic

reconnection in hall magnetohydrodynamics,” Phys. Rev. Lett. 101, 105003 (2008).

Simon, P. and Sahraoui, F., “General exact law of compressible isentropic magnetohydrodynamic

flows: theory and spacecraft observations in the solar wind,” The Astrophysical Journal 916, 49

(2021).

Simon, P. and Sahraoui, F., “Exact law for compressible pressure-anisotropic magnetohydrody-

namic turbulence: Toward linking energy cascade and instabilities,” Phys. Rev. E 105, 055111

(2022).

Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavas-

sano, B., and Pietropaolo, E., “Observation of inertial energy cascade in interplanetary space

plasma,” Physical review letters 99, 115001 (2007).

Stawarz, J. E., Smith, C. W., Vasquez, B. J., Forman, M. A., and MacBride, B. T., “The turbulent

cascade and proton heating in the solar wind at 1 au,” The Astrophysical Journal 697, 1119

(2009).

Stawarz, J. E., Smith, C. W., Vasquez, B. J., Forman, M. A., and MacBride, B. T., “The turbulent

cascade for high cross-helicity states at 1 au,” The Astrophysical Journal 713, 920 (2010).

Tu, C.-Y. and Marsch, E., “Mhd structures, waves and turbulence in the solar wind: Observations

and theories,” Space Science Reviews 73, 1–210 (1995).

Vasquez, B. J., Smith, C. W., Hamilton, K., MacBride, B. T., and Leamon, R. J., “Evalua-

22

http://dx.doi.org/10.3847/1538-4357/abab10
http://dx.doi.org/10.3847/1538-4357/abab10
http://dx.doi.org/10.1103/PhysRevLett.101.105003
http://dx.doi.org/10.1103/PhysRevE.105.055111
http://dx.doi.org/10.1103/PhysRevE.105.055111
http://dx.doi.org/10.1007/BF00748891


tion of the turbulent energy cascade rates from the upper inertial range in the solar wind at

1 au,” Journal of Geophysical Research: Space Physics 112 (2007), 10.1029/2007JA012305,

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2007JA012305.

Wan, M., Servidio, S., Oughton, S., and Matthaeus, W. H., “The third-order law for magnetohy-

drodynamic turbulence with shear: Numerical investigation,” Phys. Plasmas 17, 052307 (2010).

Weygand, J. M., Matthaeus, W. H., Dasso, S., Kivelson, M. G., and Walker, R. J., “Taylor scale and

effective magnetic reynolds number determination from plasma sheet and solar wind magnetic

field fluctuations,” J. Geophys. Res.: Space Phys. 112, A10 (2007).

23

http://dx.doi.org/ 10.1029/2007JA012305
http://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2007JA012305

	A Statistical Study of the Compressible Energy Cascade Rate in Solar Wind Turbulence: Parker Solar Probe Observations
	Abstract
	I Introduction
	II Theoretical Models and Exact Relations
	A Compressible MHD model
	B Exact relation in CMHD turbulence

	III PSP Observations and Data Selection Criteria
	IV Observational Results
	A The compressible and incompressible energy cascade rates
	B The isothermal and polytropic energy cascade components
	C The effect of compressibility and heliocentric distance over the energy cascade rates

	V Discussion and Conclusions
	 Acknowledgments
	 References


